High-resolution finite element simulation of 4:1 planar contraction flow of viscoelastic fluid

نویسندگان

  • Ju Min Kim
  • Chongyoup Kim
  • Jeong Ho Kim
  • Changkwon Chung
  • Kyung Hyun Ahn
  • Seung Jong Lee
چکیده

In this work, we present high-resolution solutions for viscoelastic 4:1 planar contraction flow problems using a transient finite element method based on the fractional step method (FSM) and stabilization techniques (DEVSS-G/DG) with linear equal-order interpolation function. The Oldroyd-B model was used as the constitutive equation. A parallel multi-frontal algorithm was implemented to enhance computational speed and all solutions were obtained on a parallel machine. The vortex intensity and the re-attachment length of corner vortex show good mesh-convergent behavior and are compared with previous results from the literature. In particular, the present results are in good agreement with the predictions of the high-resolution finite volume method of Alves et al. [15]. This may be the first case that quantitative agreement is obtained between studies using different numerical methods for the benchmark problem of 4:1 planar contraction flow. As there has been little quantitative agreement in the previous investigations and only few simulation results with highly refined meshes exit, this study may well be regarded as accurate and meaningful in the sense that reasonable convergence is achieved for prediction of 4:1 planar contraction flow using transient finite element methods. © 2005 Elsevier B.V. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Numerical simulation of the fluid dynamics in a 3D spherical model of partially liquefied vitreous due to eye movements under planar interface conditions

Partially liquefied vitreous humor is a common physical and biochemical degenerative change in vitreous body which the liquid component gets separated from collagen fiber network and leads to form a region of liquefaction. The main objective of this research is to investigate how the oscillatory motions influence flow dynamics of partial vitreous liquefaction (PVL). So far computational fluid d...

متن کامل

Numerical simulations of shear dependent viscoelastic flows with a combined finite element-finite volume method

A hybrid combined finite element–finite volume method has been developed for the numerical simulation of shear-dependent viscoelastic flow problems governed by a generalized Oldroyd-B model with a non-constant viscosity function. The method is applied to the 4:1 planar contraction benchmark problem, to investigate the influence of the viscosity effects on the flow and results are compared with ...

متن کامل

Computation of viscoelastic fluid flows at high Weissenberg number using continuation methods

The numerical simulation of viscoelastic fluid flow becomes more difficult as a physical parameter, the Weissenberg number, increases. Specifically, at a Weissenberg number larger than a critical value, the iterative nonlinear solver fails to converge, a phenomenon known as the High Weissenberg Number Problem. In this work we describe the application and implementation of continuation methods t...

متن کامل

Numerical prediction of extensional flows in contraction geometries: hybrid finite volume/element method

We examine the flow of viscoelastic fluids with various shear and elongational properties in axisymmetric and planar 4:1 contractions, under creeping flow conditions. Particular attention is paid to the influence of elongational viscosity upon vortex enhancement/inhibition. Simulations are performed with a novel hybrid finite volume/element algorithm. The momentum and continuity equations are s...

متن کامل

Efficient simulation of nonlinear viscoelastic fluid flows

This paper presents a new and efficient method for computing the flow of a non-Newtonian fluid. The approach is based on two independent concepts: Time-dependent simulation of viscoelastic flow: A new decoupled algorithm, presented in P. Saramito, Simulation numerique d'ecoulements de fluides viscoelastiques par eRments finis incompressibles et une methode de directions alternees; applications,...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005